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Abstract--The traces of echelon joints, veins and dikes in rock range from curving to straight. Theoretical 
analyses using boundary element numerical methods have concluded that straight, open fractures imply a 
significant remote differential stress whereas curving traces imply a more nearly isotropic stress. We present a 
series of laboratory experiments which investigate the tw0-dimensional propagation paths of echelon fractures in 
PMMA plates as a function of the applied biaxial loading and the initial geometry of a simple fracture array. The 
experimental results support the theoretical conclusions and verify the accuracy of the numerical method. 

At the grain scale, rock does not rigorously conform to the assumptions of isotropy, homogeneity and linear 
elasticity demanded by the numerical method. Nevertheless, results from crack path stability theory suggest that 
small-scale deviations of a fracture from the ideal path generally do not affect its large-scale behavior. Fracture 
paths which become kinked or curved by local heterogeneities are found to self-correct to a path governed by 
competition between the fracture tip and remote stress fields, provided the remote differential stress is non-zero. 
This enhances our confidence that the numerical method can be used to produce and explain realistic fracture 
geometries in rock. 

An unexpected experimental result is the non-perpendicular intersection of fractures grown in the laboratory. 
Free surface boundary conditions require that the walls of an open fracture be free of shear stress. The principal 
stresses are therefore aligned with the crack wall, and we might consequently expect an approaching opening 
mode fracture either to intersect the free surface at a right angle or to turn away and follow an asymptotic, non- 
intersecting path. Experimental and numerical modeling, however, shows how the near-tip stresses generated by 
an approaching fracture dominate the local stress field and allow it to propagate along an oblique path very close 
to intersection with the adjacent free surface. 

INTRODUCTION 

OUR ability to infer paleostress conditions from the 
geometry of joints, veins and dikes has benefited greatly 
from advances in the field of fracture mechanics. 
Methods have been introduced to relate joint and dike 
orientation to principal stress trajectories (Od6 1957, 
Muller & Pollard 1977, Engelder & Geiser 1980), joint 
and dike dilation to driving stress magnitude (Pollard & 
Muller 1976, Delaney & Pollard 1981, Segall & Pollard 
1983), joint kinking or curvature to remote differential 
stress (Olson & Pollard 1989, Cruikshank et al. 1991), 
and echelon vein and joint traces to shear deformation 
(Shainin 1950, Ramsay 1980), rotation of the remote 
stress field (Pollard et al. 1982), and mechanical fracture 
interaction (Olson & Pollard 1991). 

Numerical methods are capable of explaining a wide 
range of fracture problems which lack simple analytic 
solutions. Using a boundary element numerical model, 
Olson & Pollard (1989) related the curvature of overlap- 
ping joint traces to the magnitude of the remote differen- 
tial stress. They found that straight joints imply a signifi- 
cant remote differential stress whereas curving traces 
imply a more nearly isotropic remote stress. Here, we 
consider the same problem but adopt a laboratory 

experimental approach, investigating the two- 
dimensional propagation paths of echelon fractures in 
PMMA plates as a function of the applied biaxial loading 
and the initial geometry of a simple fracture array. 
Because the experimental boundary conditions and 
material properties are well known, they provide an 
excellent basis for evaluating the accuracy of the numeri- 
cal method. We also present arguments based on crack 
path stability which suggest that grain-scale heterogen- 
eities encountered in rock will not significantly alter the 
propagation paths from those predicted by the numeri- 
cal model. 

THEORETICAL BACKGROUND 

If we assume a homogeneous, linear elastic, isotropic 
solid, linear elastic fracture mechanics can be used to 
compute the near-tip stresses and predict fracture be- 
havior. Here, we consider a single layer or bed of rock 
subject to uniform remote stresses, ~r~, where tension is 
positive and the shear stresses (i ~ j) are positive in the 
directions shown (Fig. la). The components of remote 
stress are related to the local stresses by 
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Fig. 1. (a) An isolated fracture is subject to remote stresses (cr~1, cr-~ 2 , 
CrUz ) and surface tractions (cry., o~s). All stresses are positive as 
drawn. Material properties, geometry and loading do not change with 
x3, and plane strain conditions are assumed. (b) The magnitude of 
near-tip stresses (crrr, aoo, Oro) is proportional to the mode I (opening) 
and mode II (shearing) stress intensity factors, kl and kn. (c) Mixed 
mode I-II loading causes the propagating fracture to deviate from a 
straight path. The fracture grows in a radial direction from the crack tip 
and starts in the plane perpendicular to the direction of greatest 

tension, o~0o "x. 

o~ = lim oij. (1) 

Material properties, loading conditions and geometry 
do not change with x 3. Since the u 3 component of 
displacement is assumed zero everywhere, the com- 
ponents u I and u 2 are functions only of the co-ordinates 
xt and x2. Accelerations are sufficiently small so that 
inertial forces can be neglected relative to static forces. 
The analysis is therefore reduced to two-dimensional, 
elastostatic plane strain, and only the in-plane com- 
ponents of stress and displacement need to be con- 
sidered. 

A crack of negligible thickness penetrating the x l -x2  
plane is subject to surface tractions oX~s and O~nn due to 
friction and/or internal fluid pressure. The tractions are 
considered positive when they act to the right of and in 
the same direction as the outward normal to the surface, 
respectively (Fig. la). In this paper, we assume the crack 
walls are open and separated by a fluid phase such as air 
or water, so o~n = - p  and ~s  = 0, where p is the fluid 
pressure. If we restrict our attention to a small region 
near the fracture tip (Fig. lb), we can idealize the 
fracture front as a straight line and the fracture surfaces 
as perfectly planar. Following the conventions of frac- 
ture mechanics (Irwin 1960, Lawn & Wilshaw 1975), the 
two possible directions of crack wall displacement dis- 
continuity correspond to the two modes of in-plane 
fracture loading: opening (mode I) and sliding (mode 
II). Taking polar co-ordinates centered at the fracture 
tip, the near-tip stresses are approximated by (Erdogan 
& Sih 1963) 

, 0{( 
c7~ -~ ~ cos ~ ki 1 + sin 2 

(3 0)} 
+ k n ~ sin 0 - 2 tan (2a) 

1 ~ 20[ _Oz 23 } cos ki cos 2 ~ - k .  sin 0 (2b) (Yoo (2~r) 

1 cos 20_ {kl sin 0 + kn(3 cos 0 - 1)} 
(YrO ~ 2(2err)l/2 (2c) 

where k I and kli are the mode I and mode II stress 
intensity factors whose values depend on such factors as 
loading conditions, crack length and crack shape. In 
keeping with most of the fracture mechanics literature, 
we include a 7r I/2 term in the denominator that Erdogan 
& Sih (1963) omit, so that our ks differ from theirs by a 
factor of ~1/2. For a straight crack of half-length, c, 
subject to uniform loading, Pollard & Segall (1987) show 
that equations (2a)-(2c) are accurate to within 15% of 
the exact solution over distances ranging from r < 0.01c 
directly ahead of the crack tip (0 = 0 °) to r < 0.15c along 
the crack surfaces (0 = _+180°). Of course, the stress 
singularity predicted by equations (2a)-(2c) at the tip 
(r -- 0) is not actually achieved in nature because inelas- 
tic deformation prevents the crack tip from being per- 
fectly sharp. The linear elastic criteria for fracture 
propagation that we use here are valid if the region of 
inelastic deformation is small compared to the size of the 
near-tip field (i.e. r << 0.15c). 

Classical elastic fracture mechanics states that an 
opening mode fracture will propagate dynamically when 
the mode I stress intensity factor, kl, exceeds the frac- 
ture toughness of the material, kic, and so long as 
loading remains pure mode I, the propagating fracture 
will follow a straight path (Lawn & Wilshaw 1975, 
Broberg 1987). Propagation by means of mode II shear 
s e p a r a t i o n  (kii > kiic) is difficult to attain, and labora- 
tory experiments (Erdogan & Sih 1963, Ingraffea 1981, 
Petit & Barquins 1988) and theoretical arguments 
(Melin 1986, 1987) have demonstrated that even under 
pure mode II loading, mode I failure is usually strongly 
preferred. Apparently, mode II failure requires high 
confining pressure and frictional slip along closed crack 
walls. When an opening mode fracture is subject to 
mixed mode I-II loading, the net effect is a rotation of 
the most tensile principal stress to an angle which is no 
longer orthogonal to the fracture tip (Fig. lc). In its next 
increment of propagation, the fracture tip attempts to 
reorient itself so that pure mode I loading is restored. 
Temporally continuous propagation under smoothly 
changing mixed mode I-II loading produces smoothly 
curving paths (Radon et al. 1977, Bergkvist & Guex 
1979, Cotterell & Rice 1980), whereas a pronounced 
change in kll /k  I while the fracture is not propagating 
produces a sharp kink in the path when propagation 
resumes (Erdogan & Sih 1963, Ingraffea 1981). The 
magnitude of the ratio ki i /k  I determines the magnitude 
of change in propagation angle, and the sign of ku / k  I 
determines the direction (right-lateral shear yields right- 
curving paths and vice versa). 

Fracture path curvature in a developing fracture set 

An isolated fracture which propagates under uniform 
loading will assume a planar geometry perpendicular to 
the most tensile remote principal stress, a t .  Setting the 
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x2 axis parallel to the fracture plane gives a~ 1 = (71,r 022r  = 

and (7~2 = 0. The stress intensity factors for this 
planar, isolated crack are given by (Lawn & Wilshaw 
1975) 

k I = (0~11 - (TCn)(2rc)l /2 : ( 0 ~  a t- p)(orc) 1/2 (3a) 

k u = O~12(ZrC) 1/2 

where 2c is the crack 
fluid pressure, and ((7~ 
stress. Equations (3a) 

= 0, (3b) 

length, p = - o c ,  is the internal 
+ p) is called the fracture driving 
and (3b) state that propagation 

from a straight crack is independent of the crack-parallel 
component of remote stress d2. Cotterell & Rice (1980), 
however, have shown that the extension of a kinked or 
slightly curved crack is sensitive to the magnitudes of all 
components of the stress field. Specifically, a large 

r r crack-parallel remote differential stress, Aa r = a l - a2, 
induces shear (mode II) stress across the tip of a kinked 
crack which would tend to turn it back toward a straight 
path (Fig. 2). 

When fractures are not isolated, as in a developing set 
containing closely spaced members, adjacent fractures 
or fracture segments mechanically interact to produce 
non-uniform, mixed mode loading, and the resulting 
propagation paths can be significantly curved (Swain & 
Hagan 1978, Sempere & Macdonald 1986, Fleck 1991). 
Many naturally occurring fracture sets, however, display 
straight fracture traces, despite the close spacing and 
large overlap of their members (Segall & Pollard 1983, 
Cruikshank et al. 1991). Olson & Pollard (1989) 
employed boundary element modelling to demonstrate 
that a large crack-parallel remote differential stress 
inhibits the curvature of interacting as well as isolated 
fractures. Cruikshank et al. (1991) arrive at the same 
conclusion using Sumi et al.'s (1985) extension of the 
curved-crack analysis of Cotterell & Rice (1980) to 
include the effect of stress gradients arising from frac- 
ture interaction or nearby boundaries. They show that 
for a given fracture spacing, the paths of interacting, 
parallel fractures are sensitive to the remote stress- 
difference ratio, 

R = (o~ - a~)/(a~ + p), (4) 

where a larger ratio gives straighter paths. Note that (o[ 
- a~) is the magnitude of the remote differential stress, 
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Fig. 2. A large r e m o t e  differential  s t ress ,  Ao r = cr~ - d2, inhibits 
f racture  curva ture .  (a) Isotropic  r e m o t e  s t resses  ( A d  = 0) resolve little 
to no  shear  across  the  tip of  a curv ing  f rac ture ,  while (b) a large A d  
resolves  into shea r  s t ress  (kll) and  d im inshed  open ing  m o d e  stress  (k I ) 
across  the  curv ing  f rac ture  tip, thus  push ing  the  fracture  back toward  a 

s t ra ight  path .  

while the fracture driving stress, (all + p), determines 
the strength of near-tip stresses (see equation 3a). The 
degree of path curvature in a developing fracture set is 
apparently determined by a competition between the 
remote stress state and the local fracture-induced 
stresses. 

E X P E R I M E N T A L  W O R K  

While field examples of curving and straight overlap- 
ping fracture traces provide the motivation for this 
research, our notions of the mechanisms controlling 
fracture propagation paths can only be rigorously tested 
by measuring the geometry of fractures grown under 
well-known and reproducible conditions. Most field 
examples preserve only a small subset of the needed 
information, so we have turned to experimental 
methods. Here, we describe a set of experiments which 
investigate the two-dimensional propagation paths of 
echelon fractures in PMMA plates as a function of the 
applied biaxial loading and the initial geometry of a 
simple fracture array. 

Methods 

PMMA (polymethyl methacrylate) is a transparent 
plastic otherwise known as acrylic or by the brand names 
Perspex and Plexiglass. The deformation of polymeric 
materials is sensitive to temperature and strain rate 
(Cheng et al. 1990), but at room temperature, cast 
blocks or sheets of PMMA provide an approximately 
isotropic and homogeneous material exhibiting brittle 
failure. These properties have made it popular for use in 
model experiments (e.g. Erdogan & Sih 1963, Radon et 
al. 1977, Broberg 1987). Published data for the Young's 
modulus, Poisson's ratio and fracture toughness of 
PMMA at room temperature vary with loading rate, but 
E = 3.10 GPa, v = 0.38 and kit = 1.56 MPa • m 1/2 are 
representative values (Hendry 1966, Radon et al. 1977). 
The machinability and transparency of PMMA simpli- 
fies the process of sample preparation and allows for 
visual inspection of fracture progress and surface tex- 
ture. 

In the experiments, two narrow, parallel starter slots 
(6.16 x 0.16 cm) are milled near the center of 4.5 mm- 
thick, cross-shaped sheets of PMMA (Fig. 3). The slot 
centers have a parallel separation of 19.0 cm and a 
perpendicular spacing of either 1.0, 3.0 or 6.0 cm. Small 
cracks 3+1 mm in length are notched into the inner tips 
of the starter slots by inserting and tapping on a knife 
blade. These cracks provide sharp fracture tips and 
insure that the slots will propagate toward the middle of 
the sample upon loading. The cruciform geometry pro- 
vides a stress field across the center of the sample which 
is uniform to within +7% (Fig. 4). The average stress in 
this working area is about 75% of the applied stress. The 
observed curvature in a crack path therefore may be 
largely attributed to mechanical interaction with the 
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Fig. 3. Experimental  method used to investigate fracture propagation paths in the laboratory. A 4.5 mm-thick,  
cross-shaped P M M A  sheet is placed into a computer-controlled biaxial testing machine and attached to each of four 
hydraulically actuated pistons using grip-and-pin fixtures. Two starter slots are machined near the center of the sample and 

notched at their inner tips to insure that the fractures will propagate toward the center  of the sample. 

adjacent fracture, rather than to heterogeneities in the 
applied stress field. 

The finished sample is placed into a computer- 
controlled biaxial testing machine and attached to each 
of four hydraulically actuated pistons using grip-and-pin 
fixtures (Fig. 3). The testing machine applies normal 
displacements to the sample according to a pre-defined 
loading program and automatically records force and 
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Fig. 4. The all  component  of the stress field in one quadrant  of a 
sample with no starter slots subject to all-around tension of unit 
magnitude.  The stress field across thc working area of the sample 
(where starter slots are machined) is uniform to within _+7% and 
averages about 75% of the applied load. Stresses were calculated using 
the boundary element  method of Crouch & Starfield (1983). Scale is in 

centimeters.  

displacement data from piston-mounted load cells and 
displacement transducers mounted both on the sample 
and on the pistons. Opposing pistons move inward or 
outward in harmony, so the specimen always remains 
centered in the machine. In the experiments described 
here, extension is gradually applied in a stepwise fashion 
perpendicular to the starter slots until one of the notched 
tips begins to propagate. As the fracture propagates 
across the sample, the applied displacements are gradu- 
ally reduced or increased as necessary in order to control 
the speed of propagation. Because loading changes are 
required to limit the rate of fracture growth, we infer 
that propagation occurs near the dynamic limit (i.e. 
kt - ktc). Propagation velocity is typically on the order 
of 1-10 mm s -~ and is always held well below the 
dynamic rate. The fracture is allowed to grow until it 
either intersects, overlaps and stabilizes, or bypasses the 
opposing starter slot. The fracture is considered stabil- 
ized when additional loading causes propagation from 
the unnotched end of the starter slot rather than con- 
tinued forward growth. 

Results 

Three sets of experiments are presented for each 
fracture spacing. In each experiment (Fig. 5), every 
movement of the slot-perpendicular pistons is multiplied 
by a factor of either 1, 0 or - 1  and applied to the slot- 
parallel axis, thus providing conditions of all-around 
tension (AAT), uniaxial loading (UNI) or crack-parallel 
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Fig. 5. Fracture paths generated in the laboratory. Two paths are shown for each loading-spacing combination, and the 
fractures are drawn as if they always initiated from the lower-left starter slot. The ratio of slot-parallel to slot-perpendicular 
applied displacements varies from 1 to 0 to - 1, giving boundary conditions of all-around tension (AAT), uniaxial loading 

(UNI), and crack-parallel compression (CPC), respectively, 

Table 1. Approximate stress boundary conditions pro- 
vided by the AAT, UNI and CPC experiments. The 
open fractures are unpressurized free surfaces, so the 

fracture driving stress is given by (o] + p) = cr~ 

Experiment or Ao r R 

AAT o~ 0 ('Zero') 0 
UNI 0 o~ ('Intermediate') 1 
CPC -o] 2o~ ('Large') 2 

compression (CPC). These boundary displacements 
approximate conditions of zero, intermediate and large 
remote differential stress at the center of the sample, 
giving remote stress-difference ratios of roughly 0, 1 and 
2, respectively (Table 1). Two experiments were run for 
each loading and spacing combination, and the resulting 
paths are shown in Fig. 5. 

Although every effort was made to machine similar 
starter slots and load them identically, in all cases a 
fracture propagated from only one of the two slots. 
Figure 5 is drawn as if the fracture always initiated from 
the lower-left starter slot, so that the paths can be 
overlain for direct comparison. In fact, initiation 
occurred from one or the other slot and the choice was 
not consistent. We attribute this to a greater stress 
intensity factor, ki,  at  one of the notched tips due to 
slight disparities in loading, crack-tip sharpness and 
length. This demonstrates the sensitivity of fracture 
initiation to subtle and difficult to reproduce variations 
in loading and geometry. Despite the difficulty in pre- 
dicting from which starter slot a fracture will grow, the 
ensuing propagation paths from repeated experiments 
are remarkably consistent. 

The experimental results show that the paths of inter- 
acting echelon fractures are indeed sensitive to the 
remote differential stress, provided the fractures are not 
too closely spaced (Fig. 5). The 3 and 6 cm spacing 

experiments display paths which become progressively 
straighter as the remote differential stress is increased. 
The 1 cm spacing paths are far less responsive to changes 
in the remote stress state, and are instead dominated by 
the mechanical interaction between the fracture and 
slot. Regardless of the spacing, intersection was only 
achieved in the AAT experiments. 

In one narrow spacing experiment, propagation be- 
gan from the second slot as the first fracture tip 
approached (Fig. 5, CPC, 1 cm spacing). Subparallel 
fractures interact to increase kx as they draw near and 
begin to overlap (Pollard et al. 1982, Cruikshank et al. 

1991). At this narrow spacing, the added tensile stress 
induced by the approaching fracture was apparently 
sufficient to raise k I to ki~. The two curving crack tips 
locally traced out similar paths even though their overall 
lengths differed by a factor of three. This supports the 
conclusion that the local stress fields arising from mech- 
anical interaction were the controlling influence. 

NUMERICAL WORK 

OIson & Pollard (1989, 1991) modified the boundary 
element, displacement discontinuity method of Crouch 
& Starfield (1983) to model the growth of echelon joints 
and veins. In this two-dimensional, linear elastic, plane 
strain (or plane stress) boundary element method, the 
interior and exterior boundaries of a body are sub- 
divided into N line segments across which there is a 
discontinuity in displacement with normal and shear 
components Dn and Ds (Fig. 6). A stress or displacement 
imposed across one element affects the stresses and 
displacements across all of the others, and in order to 
match the desired boundary conditions on each element, 
one must solve a linear system of 2N equations for 2N 
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Fig. 6. In the boundary element numerical method of Olson & Pol- 
lard (1989), a fracture is divided into boundary elements of equal patch 
length, P, laid end-to-end. Each element is a line segment across which 
there is a discontinuity in displacement with normal and shear com- 
ponents D. and D,. Stress intensity factors, k I and k u, are calculated 
from the magnitudes of D n and D~ across the crack-tip element. No 
spccial crack-tip element is used. Propagation is simulated by adding 

additional elements to the end of the fracture. 
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unknowns. The factor of 2 arises because there are two 
components of displacement or stress (traction) that 
determine the boundary conditions on an element. 
Using this method, a fracture of length L can be 
modeled by N elements of constant patch length, 
P = L/N, laid end-to-end. For a straight, uniformly 
loaded crack, Olson (1991) compared the D.  and D S 
calculated for the crack tip element to the analytical 
solution for crack-wall opening and shearing (Pollard & 
Segall 1987) and arrived at the following expressions for 

k I = 0.806 DnEX/~ 
4(1 - v2)%/fi (5a) 

k n = 0.806 DsEX/~ 
4(1 - v2)V~ (5b) 

kl and ku 

Equations (5a) and (5b) also were tested against the 
solution technique of Pollard & Holzhausen (1979) for 
the case of closely spaced, straight, echelon cracks. The 
margin of error was found to be less than 5% even when 
each crack was divided into only two elements (Olson 
1991). 

Computing k] and ku for curved cracks 

The accuracy of equations (5a) and (5b) has pre- 
viously been verified only for straight cracks. As we wish 
to model the growth of curved cracks, it is useful to 
compare the stress intensity factors computed for a 
circular arc crack (Fig. 7) with the analytical solution of 
Muskhelishvili (Muskhelishvili 1952, Cotterell & Rice 
1980): 

kI -~ (TEa)l/2{[(°~ll + ~r22) - ( -2-~22) 

cos (a/2) 
× sin 2 (a/2) cos 2 (a/2) [1 + sin 2 (a/2)] 

+ (41  -- or22) COS (3a/2) -- 4 2  

× [sin (3a/2) + sin 3 (a/2)]l 
J 

(6a) 

r e . i F , .  

Fig. 7. The circular arc crack of Muskhelishvili (1952). The crack 
subtends an angle of 2a and has a projected width of 2a. 

k i i =  (,n'a) 1/2{[(°~11 2 

sin (a/2) 
x sin 2 (a/2) cos 2 (a/2) [1 + sin 2 (a/2)] 

..J- (0~11-~22) sin (3a/2) + O~12 

× [cos (3a/2) + cos (a/2) sin e (a/2)]}. (6b) 

The stress intensity factors for a circular arc crack of 
width, 2a = 1 m, divided into four, 10 and 50 patches of 
equal length were computed using the boundary ele- 
ment method and equations (5a) and (5b) for arc angles, 
2a, ranging from 0 ° (straight) to 180 ° (semi-circular). 
The normalized ki and ku calculated for pure biaxial 
(O~11 = 0~2 = O'; O~2 = 0) and pure shear (41  = ~22 = 0; 
4 2  = r) loading of unit magnitude are plotted against 
the analytical solution in Fig. 8. For a circular arc crack 
divided into 50 elements, the normalized ki and kn are 
always within 0.021 and 0.017 of the exact solution, 
respectively. These results suggest that if an arcuate 
portion of a crack which subtends an angle of 2a degrees 
is divided into at least a/2 segments, the boundary 
element method and equations (5a) and (5b) give nor- 
malized stress intensity factors with errors of less than a 
few hundredths. 

A mixed mode I-Ilpropagation criterion 

Once k~ and k n have been determined, a mixed mode 
fracture criterion is needed to determine whether and in 
what direction the crack will propagate. For their nu- 
merical method, Olson & Pollard (1989) chose the 
maximum circumferential stress criterion of Erdogan & 
Sih (1963). This criterion, which has been tested for 
PMMA (Erdogan & Sih 1963) and for rock (Ingraffea 
1981), is based on two hypotheses: (1) the crack propa- 
gates radially from its tip; and (2) it starts in the plane 
perpendicular to the direction of greatest tension. The 
angle of incipient propagation, 0o, is therefore equal to 
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Fig. 8. Normalized k I and k u calculated for a circular arc crack of width, 2a = 1 m, subject to (a) pure biaxial (d 11 = o'22 = or; 
O'~2 = 0 )  and (b) pure shear (oil = o~2 = 0; o~2 = r) loading of unit magnitude using the boundary element method of 
Crouch & Starfield (1983) and equations (5a) and (5b). The analytical solution of Muskhelishvili (1952) is shown for 

comparison. The small boxes in the inset figures show for which crack tips k I and k u are plotted• 

the angle, 0, which maximizes the tangential  stress 
componen t ,  aoo, of  the near-t ip field (Fig. lc) .  Differen- 
tiating equat ion  (2b) and setting the result equal to zero 
yields 

cos 0 [k I sin 0 + kIi(3 cos 0 - 1)] = 0. (7) 

Which has the following solutions: 

0 = _+0r (8a) 

k I sin 00 + ku(3 cos 0o - 1) = 0. (8b) 

The  solutions 0 =_+er cor respond  to the free surface 
condit ion,  Ooo = 0, at the crack walls, which is not of  
interest• Equa t ion  (8b) gives 0o in terms of  k I and kn 
(Erdogan  & Sih 1963)• A fracture subject to pure mode  I 
l o a d i n g  (k i i  = 0) propagates  straight forward,  0o = 0, 
while pure mode  II  loading (kl = 0) results in a kink 
angle of  0o = - 7 0 • 5  ° for ku > 0 or  0o = +70.5  ° for kll  < 0 
(Fig. 9a). For  computa t ional  purposes ,  it is useful to 
note  that  equat ion  (8b) can be rewrit ten and solved 
directly for 0o 

0o = sin -1 [ k  I COS ~b -- q~ (9a) 

= tan - t  (3 k n / .  (9b) 
\ k l ]  

Once  the angle of  incipient p ropaga t ion  has been 
de termined,  the max imum circumferential  stress cri- 
ter ion calls on a third hypothesis:  (3) propagat ion  occurs 
when the distribution of  tensile stress across the incipi- 
ent  plane of  failure exceeds the fracture toughness,  kic, 
whose value is a p roper ty  of  the material  

00 (2:rr)l/2aoo(O = 00) = c o s -  
2 

l °° 1 x ki cos 2 2 - - - k i t ~ s i n O o  > k l c .  (10) 

For  pure mode  I loading (kn = 0), we have 0o = 0, and 
equat ion (10) reduces to the propagat ion  criterion of  
classical fracture mechanics  

k I > klc. (11) 

- 7 o J ( a )  -60  
~" -50  _4o_ / 
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Fig. 9. Graphical representation of the maximum circumferential 
stress criterion (Erdogan & Sih 1963). (a) Angle of incipient propaga- 
tion as a function ofkn/k  I . (b) The critical values Ofkl and k. required 

for opening mode propagation under mixed mode I-ll loading. 
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A fracture subjected to mixed mode loading is therefore 
l .  

expected to propagate when 0. 
-1. 

cosO°lkl cos 20° k ' 1 3  " / l .  sm 0oj > 1. (12) 0 
2 Lkk 2 kk -1. 

1 
0. 

The failure envelope predicted by equation (12) is -1. 
shown in Fig. 9(b). 

2, 
In geologic and engineering materials subjected to -~i 

long-term loading, fracture propagation can be realized .] 
at values of kl substantially lower than klc (Atkinson & -2. 
Meredith 1987). However, as long as the subcritical 2 1, 
fracture follows a mode I path for which kll = 0, the 0. 
maximum circumferential stress criterion should still -1 -z 
apply, provided we replace k k in equation (12) with the z. 
threshold stress intensity factor for subcritical growth, 1. 0. 
kto. -1 

-2 '  

Simulating the laboratory results 

We now compare the predictions of the numerical 
method of Olson & Pollard (1989) to the fracture paths 
generated in the laboratory using PMMA. From a nu- 
merical standpoint, the initial problem is perfectly sym- 
metric, but in order to match the laboratory results we 
allow propagation from only one of the two starter slots. 
The outer boundary of the sample is divided into 80 
boundary elements either 2.60 or 3.14 cm in length, 
while each starter slot is divided into 20 boundary 
elements of equal length (3.08 mm). One additional 
element of the same patch length (3.08 mm) is added to 
the tip of the propagating slot at an angle of either 0 ° or 
_ 10 ° to simulate the length and possible misalignment of 
the notched crack tip. Elements along the edges of the 
sample where grip fixtures attach are considered free of 
shear stress and are displaced inward or outward in a 
normal direction to simulate the loading applied by the 
testing machine. All other elements lie along free sur- 
faces with zero normal and shear tractions. In the 
numerical calculations, an extension sufficient to initiate 
fracture is applied perpendicular to the starter slots and 
held constant as the fracture propagates. Slot- 
perpendicular displacements are multiplied by a factor 
of 1, 0 or - 1  and applied simultaneously to the slot- 
parallel axis to simulate the AAT, UNI and CPC experi- 
ments, respectively. 

Once the desired displacements on the boundaries of 
the cruciform sample have been applied, the boundary 
element method is used to solve for the stress field and 
the displacement discontinuity, D n and Ds, across the 
crack-tip element. If the k I and kn calculated from 
equations (5a) and (5b) satisfy the failure criterion of 
equation (12), then a new element of the same patch 
length (3.08 mm) is added to the end of the crack at the 
angle, 0o, given by equation (9). The added element 
perturbs the stress field, so the boundary element 
method is called upon after every iteration to recalculate 
the stress and displacement fields. This method in- 
herently assumes quasi-static crack growth (i.e. well 
below the dynamic rate), so the applied displacements 
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Fig. 10. Fracture paths predicted for the laboratory experiments  
using the boundary element  numerical method  of Olson & Pollard 
(1989) and a fracture patch length of 3.08 ram. The two paths shown 
for each loading and spacing combination correspond to initial mis- 
al ignments of the notched crack with the starter slot of +_ 10 °. Scale is in 

centimeters.  

do not need to be varied in order to control the rate of 
propagation as was necessary for the laboratory experi- 
ments. The numerically calculated paths are plotted 
together with the experimental paths for comparison in 
Fig. 10, and their agreement is remarkable. The two 
numerical paths shown for each loading-spacing combi- 
nation correspond to initial misalignments of the 
notched crack with the starter slot of +_ 10 °. 

N O N - P E R P E N D I C U L A R  I N T E R S E C T I O N S  

An unexpected experimental result is the non- 
perpendicular intersection of fractures grown in the 
laboratory (Fig. 5, AAT experiments). Boundary con- 
ditions require that no shear stress can be resolved 
across the free surface of an open slot or fracture. In 
other words, this surface is a principal stress plane, and 
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Fig. 11. (a) & (b) Numerical and experimental results suggest that a mode I fracture can intersect an adjacent, open 
fracture at an oblique angle, despite the free surface boundary condition at the crack wall. (c) A plot of the stress field just 
prior to intersection shows that stresses induced by the crack tip still dominate the local field. The contours and long tick 
marks give the magnitude (in MPa) and direction of the most tensile principal stress, c5, respectively. Scales are in 

centimeters. 

the most tensile principal stress must lie either parallel or 
perpendicular to it, regardless of the remote field or the 
local fracture-induced field. If an approaching fracture 
follows a pure mode I path, we should expect it either to 
intersect the free surface at a right angle or to turn away 
and follow an asymptotic, non-intersecting path. The 
experimental paths which stabilize rather than intersect 
do follow asymptotic paths (Fig. 5, 1 cm UNI and CPC 
experiments), but even when viewed under a micro- 
scope, the approaches of intersecting fractures remain 
oblique. 

From the laboratory results, it might appear that a 
non-mode I failure mechanism acts during the last incre- 
ments of propagation. Additional experimental and 
numerical modeling, however, indicates that a mode I 
fracture can propagate very close to the free surface 
without turning perpendicular to it. Figure 11 (a) shows a 
3 cm spacing experiment in which the upper right starter 
slot was allowed to propagate a short distance under 
uniaxial loading. The sample was removed from the 
testing machine, and small holes were drilled at either 
end of the fractured slot to prevent further propagation. 
The sample was then placed back into the machine and 
subjected to AAT loading until a fracture propagated 
from the lower-left slot and intersected the adjacent 
crack. The intersection angle was oblique. 

This laboratory experiment was simulated nu- 
merically by dividing the upper-right crack and lower- 
left slot into very small boundary elements with lengths 
of 0.75 and 0.50 ram, respectively. The numerical frac- 
ture path was then calculated to within 1.0 mm of 
intersection, giving an oblique approach almost identi- 
cal to the experimental path. The results imply that the 
stresses generated at the tip of a propagating fracture so 
dominate the local field that the free surface condition 
has little effect on the mode I fracture path. A super- 
imposed plot of stress trajectories and magnitude of the 

most tensile principal stress, al (Fig. l lc) ,  provides 
additional evidence that this is the case. Note that even 
for this extremely small separation, the stress trajec- 
tories just ahead of the crack tip favor continued, 
straightforward propagation. 

Of course, the numerical method preserves a simple 
linear elastic response to the very tip of the crack, 
whereas real materials have a zone of inelastic defor- 
mation about the tip (Kanninen & Popelar 1985, p. 146). 
For a propagating crack in PMMA, Lawn & Wilshaw 
(1975, p. 89) estimate an inelastic zone length of 0.8 mm. 
The mechanics of final intersection can only be modelled 
by explicitly including this zone. Nevertheless, the nu- 
merical model, which is valid so long as the distance 
between fractures exceeds the inelastic zone size, dem- 
onstrates that an opening mode fracture can propagate 
along an oblique path very close to the intersection with 
the free surface of another open fracture. 

C R A C K  P A T H  S T A B I L I T Y  

Even in very homogeneous materials, a propagating 
fracture may encounter small-scale irregularities which 
cause it to deviate slightly from a mode I path. This 
problem is especially significant in rock, which can be 
very heterogeneous at the grain scale. For this reason, it 
is instructive to investigate the effect that a small kink at 
the crack tip has on the ensuing propagation path. For a 
straight crack subject to mixed mode loading, the stress 
intensity factors, K I and Kn, at the tip of an infinitesimal 
kink may be expressed in terms of the stress intensity 
factors, kl and kxi, at the tip of the main crack prior to 
kinking (Cotterell & Rice 1980, Melin 1987) 

K l = C11kl + C12k n (13a) 

g n = C21k I -F 622k l i ,  (13b) 

,~G ]5:3/5-G 
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where the Cij are trigonometric functions of the kink 
angle, a (Fig. 12a). If the initial crack were subject only 
to pure mode I loading (kii = 0), then to the first order 

K I = ¼[3 cos (a/2) + cos (3a/2)]ki (14a) 

KII = ¼[sin (a/2) + sin (3a/2)]k I. (14b) 

Cotterell & Rice (1980) show that equations (14a) and 
(14b) are accurate to within 5% for kink angles, a, as 
large as 90 ° . Because K n at the tip of the kink is 
non-zero, the next increment of propagation will occur 
at some angle, 0o, to the kink. Furthermore, because the 
sign of K u and a are the same, 0o and a have opposite 
signs, This insures that the kinked crack will at least 
initially turn back toward its previous path. In Fig. 12(b) 
we plot 0o as a function of a using equations (9a) and 
(9b) and the ratio Kn/K determined from equations 
(14a) and (14b). 

For our purposes, the infinitesimal kink is insignifi- 
cant unless it leads to a significant departure of the crack 
from its previous path on the macroscopic scale. There- 
fore, the crack path can be considered stable when 
deviations arising from a small kink become negligible 
relative to the crack length as propagation continues 
(Melin 1983, Broberg 1987). For a straight crack parallel 
to x2, subject to remote s t r e s s e s  o~1 = o~ and o~2 = d2, 
Melin (1983) uses a perturbation analysis to demon- 
strate that the crack path is stable so long as 
( ~  - d2) > 0. In other words, the propagation path of a 
straight crack is stable when the crack lies perpendicular 
to the most tensile (or least compressive) remote princi- 
pal stress. If ( 4  - ~ )  < 0, the crack diverges rapidly 
from its original plane after kinking. For isotropic re- 
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Fig. 12. (a) The stress intensity factors, K t and Kll, at the tip of  an  
infinitesimal kink of angle, a ,  can be written in terms of the stress 
intensity fractures, k i and kll, at the tip of the straight crack just prior 
to kinking. (b) If the unkinked fracture was subject to pure mode I 
loading (kli = 0), then the angle of incipient propagation, 0o, and a 
have opposite signs, and the fracture initially turns back toward its 
previous propagation path. Cont inued divergence or convergence 
from the previously straight path is governed by the orientation and 

relative magnitudes of the remote principal stresses. 

mote stresses ( ~  = ~ ) ,  the crack path is indifferent, as 
the magnitude of deviation neither increases or de- 
creases when normalized by the crack length (Broberg 
1987, fig. 15). Fracture experiments in PMMA by Radon 
et al. (1977) confirm these expectations. 

Application to the experimental results 

Inspection of Fig. 5 reveals that, while repeated UNI 
and CPC experiments produce consistently similar 
paths, the paths generated by AAT experiments are less 
reproducible. The numerically calculated paths (Fig. 10) 
also display this subtle variation. This observation is 
readily explained when we consider that the remote 
stress state approximated by AAT loading is essentially 
isotropic, so that small deviations from the ideal path 
(e.g. misaligned notches at the end of the starter slots) 
are not readily corrected by the influence of a remote 
differential stress during continued propagation. Small 
path disturbances in the UNI and CPC experiments, on 
the other hand, are rapidly damped out by a remote 
differential stress approximately equal to, and twice 
as great as, the fracture driving stress, respectively 
(Table 1). 

Application to the numerical method 

The fracture path length used to calculate the Fig. 10 
paths was determined by dividing each starter slot into 
20 boundary elements. Longer patches, however, pro- 
duce paths which are similar to the Fig. 10 results, even 
when there are only a few elements per starter slot. 
Figure 13 shows the paths predicted for the 3 cm spacing 
experiments using a patch length of 20.53 mm, or just 
three elements per starter slot. Even though these ele- 
ments are almost seven times longer than those used in 
Fig. 10 and are unable to capture the curving geometry 
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Fig. 13. A comparison of the numerical  paths predicted for the 3 cm 
spacing experiments  using a patch length of 20.53 mm with the paths 
predicted using much shorter  3.08 ram-long elements.  Initial misalign- 
ment  of the notched crack with the starter slot is assumed to be zero. 

Scale is in centimeters.  
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in detail, the predicted paths are quite similar. This rapid 
convergence occurs because a boundary element which 
is misaligned from the correct path will experience the 
same corrective mode II stresses as a misoriented frac- 
ture tip (Fig. 14). As with a curved or kinked crack, any 
errors in the calculated path are more strongly corrected 
by a larger remote differential stress. 

Several mixed mode fracture theories besides the 
maximum circumferential stress criterion have been 
proposed to predict the onset and direction of propaga- 
tion (Bergkvist & Guex 1979, Ingraffea 1981). Most are 
posed in terms of energy constraints, but all may be 
formulated in terms of the stress intensity factors k I and 
k l i .  When the ratio of kit to ki is large, the theories may 
differ significantly, yet in the limit as the loading be- 
comes purely mode I (k n --~ 0), they converge to the 
common solution of 0o = 0 and k I > kic.  Because a 
smoothly curving crack traces out a path for which k n = 
0, the resulting trajectory is largely independent of the 
choice among these criteria (Bergkvist & Geux 1979). 
Furthermore, a theory which incorrectly predicts the 
magnitude of the angle of incipient propagation can still 
produce accurate fracture paths provided it properly 
predicts the sign and the remote differential stress is 
non-zero. 

This can be demonstrated readily by repeating the 
numerical simulation of the laboratory experiments 
while replacing equations (9a) and (9b) with a new, 
highly unrealistic equation for predicting the angle of 
incipient propagation 

Oo = / - - 5 ° ;  k i i  ~> O. ( 1 5 )  
[ 5°;kn < 0 

While this equation obeys the constraint that propaga- 
tion angle is determined by the sense of shear, it com- 
pletely ignores the magnitude dependence of 0o on the 
ratio of mode II to mode I loading, kn/kv During every 
increment of crack growth, the fracture propagation 
angle changes by +5 ° or - 5  °, so that even the path of a 
straight crack can at best be approximated by a saw- 
tooth arrangement of elements. Nevertheless, the paths 
predicted using equation (15) are remarkably close to 
the original numerical results (Fig. 15), and only the 
AAT path, for which the remote differential stress is 
approximately zero, is significantly altered. 
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Fig. 15. A comparison of the numerically predicted paths for the 3 cm 
spacing experiments using the unrealistic 5 ° incipient angle criterion of 
equation (15) with the paths predicted using the maximum circumfer- 
ential stress criterion. Except where the remote stress state is nearly 
isotropic ( A A T  loading), the constantly kinking 5 ° criterion path self- 
corrects and produces results that closely agree with the more sophisti- 
cated method. Initial misalignment of the notched crack with the 

starter slot is assumed to be zero. Scale in in centimeters. 

Implications for rock fracture 

The self-correcting nature of fracture paths under 
non-isotropic states of stress has important implications 
for rock fracture. The micromechanical mechanisms 
governing rock fracture can be quite complex, and over 
geologic time scales a fracture can propagate at stress 
intensities well below klc (Atkinson & Meredith 1987). 
However, as long as the fracture attempts to follow a 
mode I path for which k i t  = 0 ,  the crack path predictions 
presented in this paper should still apply. A more serious 
concern is the heterogeneity of rock at the grain scale, 
but the results presented here indicate that the crack 
path should remain stable so long as the remote stress 
state is non-isotropic. Indeed, even a constantly kinking 
crack (Fig. 15) approximates the ideal path. Of course, 
rocks which have a strong fabric may behave anisotropi- 
cally with respect to fracture strength and propagation at 
larger scales. These rocks would require different 
methods of analysis based on anisotropic materials. 

CONCLUSIONS 

Starter Slot 
Misoriented Boundary c 

Elements / 

kl[ Correct Path 

Fig. 14. Self-correcting nature of the numerical method used to calcu- 
late fracture paths. A misoriented boundary element at the fracture tip 
which strays away from the mode 1 path is subjected to mode II 
loading. The mode II stresses are always imposed with the proper sign 
(sense of shear) to bring the fracture tip back toward the correct path. 

The boundary element numerical method as adapted 
to opening mode fracture propagation by Olson & 
Pollard (1989) is successful in predicting experimental 
fracture paths in PMMA. Our laboratory results confirm 
the previous hypothesis (Olson & Pollard 1989, Cruik- 
shank et al. 1991) that the relative straightness or curva- 
ture of echelon fracture traces depends on the fracture 
spacing and magnitude of the remote differential stress. 
Under non-isotropic states of stress, kinked or curved 
fracture paths are found to be self-correcting. Small- 
scale deviations of the fracture path at grain boundaries 
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in rock are therefore expected to be of little importance 
in determining large-scale fracture geometry. Our confi- 
dence is therefore enhanced that boundary element 
numerical methods can be used to produce and explain 
realistic fracture geometries in rock. 

To our knowledge, the angular intersection of a frac- 
ture with an adjacent free surface has not previously 
been described. Additional experimental, numerical 
and theoretical work should help to determine what 
factors control the paths of intersecting fractures. Be- 
cause the angle of intersection may provide another 
measure of the remote stress field, additional research 
on this subject would be worthwhile. 
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